Volume 25, Issue 76 (4-2025)                   jgs 2025, 25(76): 0-0 | Back to browse issues page

XML Persian Abstract Print


1- , ssoltani@ardakan.ac.ir
2- Ardakan University
3- University of Tehran
Abstract:   (1885 Views)
In this research, the effect of climate change on the amount of virtual water of some strategic crops was investigated in Kerman province for future periods. For this purpose, the climatic data of HadCM3 model was used under RCP4.5 radiative forcing scenario. In order to investigate the possibility of producing and simulating meteorological data in the future periods, was applied the LARS-WG microscale-representative model. For the basic period (1991-2011), was done calibration and validation of the model. Through the data of LARS-WG, the amount of precipitation and the maximum and minimum temperature of the selected stations were predicted for the periods of 2011-2070 and compared with the base period. Virtual water amount was calculated for selected crops including alfalfa, barley and wheat. The results of the current research indicate that the phenomenon of climate change significantly affects the evapotranspiration and the performance of the studied crops, and hence it will affect the agricultural water productivity in the future. While the average temperature of the growing season will increase in the future under the influence of climate change, the maximum temperature parameter will be affected by this phenomenon more than the minimum temperature, and parallel to this, the water requirement and plant evaporation-transpiration will increase in this period. Also, the surveys show a decrease in precipitation in the hot seasons and an increase in the cold seasons in all study stations. The amount of virtual water changes obtained for all studied plants is increasing, and this increase for barley and wheat crops shows a greater increase on average in the future period. The biggest increase in the virtual water compared to the base period in Kerman station is related to barley and alfalfa products by at least 30%.
 
     
Type of Study: Research | Subject: climatology
Received: 2022/08/17 | Accepted: 2022/11/22

References
1. حجازی زاده، زهرا؛ زارعی، شریفه؛ صیاد، وحیده؛ (1402). بررسی چشم انداز تغییرات شاخص های حدی دما و بارش در استان کردستان بر اساس سناریوهای واداشت تابشی (RCP). مجله تحقیقات کاربردی علوم جغرافیایی. ۲۳ (۶۹) :۱۴-1.
2. حیدری ناشه کبود، شادیه؛ خوشخو، یونس؛ (1398). تصویرسازی و پیش‌بینی تغییرات آتی تبخیر و تعرق مرجع در مقیاس‌های فصلی و سالانه در غرب ایران بر اساس سناریوهای انتشار RCP. مجله تحقیقات کاربردی علوم جغرافیایی. 19(53): 157-176.
3. جعفری گدنه، میثم؛ سلاحقه، علی؛ ملکیان، آرش؛ (1400). بررسی تاثیر سناریوهای مختلف تغییر اقلیم بر نوسانات آب زیرزمینی در مناطق خشک و نیمه خشک (مطالعه موردی: دشت کرمان). مجله مهندسی آبیاری و آب ایران. 44(2): 252-275.
4. دهقانی، طیبه؛ سلیقه، محمد؛ علیجانی، بهلول؛ (1397). اثر تغییر اقلیم بر میزان آب قابل بارش در سواحل شمالی خلیج فارس. نشریه تحقیقات کاربردی علوم جغرافیایی، 18(49): 75-91.
5. علیقلی نیا، توحید؛ قربانی، خلیل؛ رضایی، حسین؛ قربانی نصر آباد، قربان؛ (1399). ارزیابی و شبیه سازی ردپای آب محصولات کشاورزی در اقلیم های مختلف ایران با لحاظ سناریوهای تغییر اقلیم. مجله تحقیقات منابع آب ایران. 54(3): 80-97.
6. غلامحسین پورجعفری نژاد، ابوالفضل؛ علیزاده، امین؛ نشاط، علی؛ (1392). بررسی ردپای اکولوژیک آب و شاخص های آب مجازی در محصولات پسته و خرما در استان کرمان. فصلنامه علمی پژوهشی مهندسی آبیاری و آب، شماره 13: 80-89.
7. رحیمی پور انارکی، محمدرضا؛ محمدی، علی؛ رفیعیان، مجتبی؛ ارجمندی، رضا؛ کریمی، سعید؛ (1399). ارزیابی آب مجازی و ردپای آب محصولات کشاورزی (شهرستان، قلعه گنج). فصلنامه مطالعات جغرافیایی مناطق خشک. 11(41): 52-68.
8. روستایی، مریم؛ اسدی، علی؛ کلانتری، خلیل؛ (1400). بررسی روابط متقابل مولفه های کشاورزی اقلیم هوشمند با استفاده از تکنیک DEMATEL. فصلنامه تحقیقات اقتصاد و توسعه کشاورزی ایران. 52(3): 569-589.
9. زارعیان، محمدجواد؛ (1400). شناسایی اولویت های بخش آب جهت سازگاری با تغییر اقلیم در حوضه زاینده رود با رویکرد پدافند غیرعامل. مجله مدیریت آب و آبیاری، 11(2): 291-300.
10. صلاحی، برومند؛ صفریان زنگیر، وحید؛ (1402). پایش تأثیر گرمایش جهانی برکشت گندم در دشت مغان (گرمی) با کاربرد مدل گردش عمومی جوی. تحقیقات کاربردی علوم جغرافیایی. 23(68): 99-113.
11. محمدرضایی، مژده؛ قهرمان، نوذر؛ (1400). چشم انداز آب مجازی گیاهان عمده زراعی تحت سناریوهای واداشت تابشی تغییر اقلیم (مطالعه موردی استان کرمان). نشریه پژوهشهای اقلیم شناسی،45: 80-67
12. نیکبخت شهبازی، علیرضا؛ (1397). ارزیابی اثرات نوسانات اقلیم بر میزان آب مجازی محصولات کشاورزی استان خوزستان تحت سناریوهای واداشت تابشی، نشریه فیزیک زمین و فضا، 44(2): 363-378.
13. Aligholi Nia T. Ghorbani Kh. Rezai H. Ghorbani Nasr Abad Gh. 2020. Evaluation and simulation of water footprints of agricultural products in different climates of Iran in terms of climate change scenarios. Journal of Iranian Water Resources Research. 54(3): 80-97. [In Persian]
14. Allan JA. 1993. Fortunately there are substitutes for water otherwise, our hydropolitical futures would be impossible' In: Proceedings of Priorities for water resources allocation and management, ODA, London, 13-26.
15. Allan JA. 2003. Virtual water-the water, food, and trade nexus. Useful concept or misleading metaphor? Water international. 28(1):106-13. [DOI:10.1080/02508060.2003.9724812]
16. Baki S. Rozos E. and Makropoulos C. 2018. Designing water demand management schemes using a socio-technical modelling approach. Sci. Total Environ. 622,1590e1602. [DOI:10.1016/j.scitotenv.2017.10.041] [PMID]
17. Dehghani T. Saligheh M. Alijani B. 2017. The effect of climate change on the amount of precipitable water in the northern coasts of the Persian Gulf. Journal of Applied Research in Geographical Sciences, 18(49): 75-91. [In Persian] [DOI:10.29252/jgs.18.49.75]
18. Duan P. Qin L. Wang Y. and He H. 2015. Spatial pattern characteristics of water footprint for maize production in Northeast China. Journal of the Science of Food Agriculture 96(2): 561- 568. DOI: 10.1002/jsfa.7124. [DOI:10.1002/jsfa.7124] [PMID]
19. Foley D. Thenkabail P. S. Aneece I. P. Teluguntla P. G. and Oliphant A. J. 2019. A meta-analysis of global crop water productivity of three leading world crops (wheat, corn, and rice) in the irrigated areas over three decades. International Journal of Digital Earth, 13(8): 939-975. [DOI:10.1080/17538947.2019.1651912]
20. Gholamhossein Pourjafarinejad A. Alizadeh A. and Neshat A. 2013. Investigation of water ecological footprint and virtual water indicators in pistachio and date crops in Kerman province, Irrigation and Water Engineering Research Quarterly, No. 13, 80-89. [In Persian]
21. Gordon C. Cooper C. Senior C.A. Banks H. Gregory J.M. Johns T.C. Mitchell J.F.B. and Wood R.A. 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim. Dynam. 16: 147-168. [DOI:10.1007/s003820050010]
22. Hejazizadeh Z. Zarei S. Sayad V. 2023. Investigation of Changes of Temperature and Rainfall Indicators in Kurdistan Province Based on Radiation Injection Scenarios (RCP). Journal of Applied researches in Geographical Sciences. 23 (69):1-14. [In Persian]
23. Heydari-Tasheh-Kaboud S. Khoshkhue Y. 2019. Projection and prediction of the annual and seasonal future reference evapotranspiration time scales in the West of Iran under RCP emission scenarios. Journal of Applied researches in Geographical Sciences.19 (53):157-176. [In Persian] [DOI:10.29252/jgs.19.53.157]
24. Hirwa H. Zhang Q. Qiao Y. Peng Y. Leng P. Tian C. Khasanov S. Li F. Kayiranga A. Muhirwa F. and Itangishaka A.C. 2021. Insights on water and climate change in the greater horn of Africa: Connecting virtual water and water-energy-food-biodiversity-health nexus. Sustainability, 13(11), p.6483. [DOI:10.3390/su13116483]
25. Kiani qale sard S. Shahraki J. Akbari A. Sardar Shahraki A. 2019. Investigating the effect of climate change on agricultural water consumption and Iranian water resources reserves. Journal of Iranian Irrigation and Water Engineering. 37(3): 109-120. [In Persian]
26. Konar M. Hussein Z. Hanasaki N. Mauzerall D.L. and Rodriguez-Iturbe I. 2013. Virtual water trade flows and savings under climate change. Hydrology and Earth System Sciences, 17(8): 3219-3234. [DOI:10.5194/hess-17-3219-2013]
27. Jafari Gadneh M. Salajegheh A. Malekian A. 2021. The effect of different climate change scenarios on groundwater fluctuations in arid and semi -arid regions (Case Study: Kerman Plain). Journal of Iranian Irrigation and Water Engineering. 44(2): 252-275. [In Persian]
28. Mohammad Rezaei M. Khaherman N. 2021. The virtual water landscape of major crops under radiative forcing scenarios of climate change (case study of Kerman province). Climatology Research Journal, 45: 67-80. [In Persian]
29. Nikbakht Shahbazi A.R. 2017. Evaluating the effects of climate fluctuations on the virtual water content of agricultural products in Khuzestan province under radiative forcing scenarios, Journal of Earth and Space Physics, 44(2): 363-378. [In Persian]
30. Nikolaou G. Neocleous D. Christou A. Polycarpou P. Kitta E. and Katsoulas N. 2021. Energy and Water Related Parameters in Tomato and Cucumber Greenhouse Crops in Semiarid Mediterranean Regions. A Review, Part I: Increasing Energy Efficiency. Horticulturae, 7(12): 521. [DOI:10.3390/horticulturae7120521]
31. Pope V.D. Gallani M.L. Rowntree P.R. and Stratton R.A. 2000. The impact of new physical parametrizations in the Hadley Centre climate model HadAM3. Climate Dynamics, 16: 123-146. [DOI:10.1007/s003820050009]
32. Rahimipour Anarki M. R. Mohammadi A. Rafiyan M. Arjamandi R. and Karimi S. 2019. Evaluation of virtual water and water footprint of agricultural products (Shaherstan, Qalaganj). Quarterly Journal of Geographical Studies of Arid Regions, 11(41): 52-68. [In Persian]
33. Roustaie M. Asadi A. Kalantari Kh. 2021. Investigating the interactions of intelligent agricultural components using Dematel technique. Journal of Iranian Agricultural Economics and Development Research. 52(3): 569-589. [In Persian]
34. Salahi B, safarian zangir V. 2023. Monitoring the impact of global warming on wheat cultivation in the Mughan Plain (Germi) Using the atmospheric circulation model. Journal of Applied researches in Geographical Sciences. 23(68): 99-113. [In Persian]
35. Yang C. Fraga H. Van Ieperen W. and Santos J.A. 2017. Assessment of irrigated maize yield response to climate change scenarios in Potugal. Agricultural Water Management. 184: 178-190. [DOI:10.1016/j.agwat.2017.02.004]
36. Zareian J. 2021. Identify the priorities of the water sector to adapt to climate change in the Zayandehrood Basin with passive defense approach. Journal of Water and Irrigation Management, 11 (2): 291-300. [In Persian]
37. Zhao Q. Junguo L. Nikolay Kh. Obersteiner M. and Westphal M. 2014. Impacts of climate change on virtual water content of crops in China. Ecological Informatics, 19, 26-34. [DOI:10.1016/j.ecoinf.2013.12.005]
38. Zhao H. Qu S. Guo S. Zhao H. Liang S. and Xu, M. 2019. Virtual water scarcity risk to global trade under climate change. Journal of cleaner production, 230: 1013-1026. [DOI:10.1016/j.jclepro.2019.05.114]
39. Zhi Y. Hamilton P.B. Wu G. Hong N. Liang L. Xiong D. and Sun Y. 2022. Virtual water indicator for comprehensive water pressures: Model and case studies. Journal of Hydrology, 608: 127664. [DOI:10.1016/j.jhydrol.2022.127664]
40. Aligholi Nia T. Ghorbani Kh. Rezai H. Ghorbani Nasr Abad Gh. 2020. Evaluation and simulation of water footprints of agricultural products in different climates of Iran in terms of climate change scenarios. Journal of Iranian Water Resources Research. 54(3): 80-97. [In Persian]
41. Allan JA. 1993. Fortunately there are substitutes for water otherwise, our hydropolitical futures would be impossible' In: Proceedings of Priorities for water resources allocation and management, ODA, London, 13-26.
42. Allan JA. 2003. Virtual water-the water, food, and trade nexus. Useful concept or misleading metaphor? Water international. 28(1):106-13. [DOI:10.1080/02508060.2003.9724812]
43. Baki S. Rozos E. and Makropoulos C. 2018. Designing water demand management schemes using a socio-technical modelling approach. Sci. Total Environ. 622,1590e1602. [DOI:10.1016/j.scitotenv.2017.10.041] [PMID]
44. Dehghani T. Saligheh M. Alijani B. 2017. The effect of climate change on the amount of precipitable water in the northern coasts of the Persian Gulf. Journal of Applied Research in Geographical Sciences, 18(49): 75-91. [In Persian] [DOI:10.29252/jgs.18.49.75]
45. Duan P. Qin L. Wang Y. and He H. 2015. Spatial pattern characteristics of water footprint for maize production in Northeast China. Journal of the Science of Food Agriculture 96(2): 561- 568. DOI: 10.1002/jsfa.7124. [DOI:10.1002/jsfa.7124] [PMID]
46. Foley D. Thenkabail P. S. Aneece I. P. Teluguntla P. G. and Oliphant A. J. 2019. A meta-analysis of global crop water productivity of three leading world crops (wheat, corn, and rice) in the irrigated areas over three decades. International Journal of Digital Earth, 13(8): 939-975. [DOI:10.1080/17538947.2019.1651912]
47. Gholamhossein Pourjafarinejad A. Alizadeh A. and Neshat A. 2013. Investigation of water ecological footprint and virtual water indicators in pistachio and date crops in Kerman province, Irrigation and Water Engineering Research Quarterly, No. 13, 80-89. [In Persian]
48. Gordon C. Cooper C. Senior C.A. Banks H. Gregory J.M. Johns T.C. Mitchell J.F.B. and Wood R.A. 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim. Dynam. 16: 147-168. [DOI:10.1007/s003820050010]
49. Hejazizadeh Z. Zarei S. Sayad V. 2023. Investigation of Changes of Temperature and Rainfall Indicators in Kurdistan Province Based on Radiation Injection Scenarios (RCP). Journal of Applied researches in Geographical Sciences. 23 (69):1-14. [In Persian]
50. Heydari-Tasheh-Kaboud S. Khoshkhue Y. 2019. Projection and prediction of the annual and seasonal future reference evapotranspiration time scales in the West of Iran under RCP emission scenarios. Journal of Applied researches in Geographical Sciences.19 (53):157-176. [In Persian] [DOI:10.29252/jgs.19.53.157]
51. Hirwa H. Zhang Q. Qiao Y. Peng Y. Leng P. Tian C. Khasanov S. Li F. Kayiranga A. Muhirwa F. and Itangishaka A.C. 2021. Insights on water and climate change in the greater horn of Africa: Connecting virtual water and water-energy-food-biodiversity-health nexus. Sustainability, 13(11), p.6483. [DOI:10.3390/su13116483]
52. Kiani qale sard S. Shahraki J. Akbari A. Sardar Shahraki A. 2019. Investigating the effect of climate change on agricultural water consumption and Iranian water resources reserves. Journal of Iranian Irrigation and Water Engineering. 37(3): 109-120. [In Persian]
53. Konar M. Hussein Z. Hanasaki N. Mauzerall D.L. and Rodriguez-Iturbe I. 2013. Virtual water trade flows and savings under climate change. Hydrology and Earth System Sciences, 17(8): 3219-3234. [DOI:10.5194/hess-17-3219-2013]
54. Li M. Cao X. Liu D. Fu Q. Li T. and Shang R. 2022. Sustainable management of agricultural water and land resources under changing climate and socio-economic conditions: A multi-dimensional optimization approach. Agricultural Water Management, 259:107235. [DOI:10.1016/j.agwat.2021.107235]
55. Jafari Gadneh M. Salajegheh A. Malekian A. 2021. The effect of different climate change scenarios on groundwater fluctuations in arid and semi -arid regions (Case Study: Kerman Plain). Journal of Iranian Irrigation and Water Engineering. 44(2): 252-275. [In Persian]
56. Mohammad Rezaei M. Khaherman N. 2021. The virtual water landscape of major crops under radiative forcing scenarios of climate change (case study of Kerman province). Climatology Research Journal, 45: 67-80. [In Persian]
57. Nikbakht Shahbazi A.R. 2017. Evaluating the effects of climate fluctuations on the virtual water content of agricultural products in Khuzestan province under radiative forcing scenarios, Journal of Earth and Space Physics, 44(2): 363-378. [In Persian]
58. Nikolaou G. Neocleous D. Christou A. Polycarpou P. Kitta E. and Katsoulas N. 2021. Energy and Water Related Parameters in Tomato and Cucumber Greenhouse Crops in Semiarid Mediterranean Regions. A Review, Part I: Increasing Energy Efficiency. Horticulturae, 7(12): 521. [DOI:10.3390/horticulturae7120521]
59. Pope V.D. Gallani M.L. Rowntree P.R. and Stratton R.A. 2000. The impact of new physical parametrizations in the Hadley Centre climate model HadAM3. Climate Dynamics, 16: 123-146. [DOI:10.1007/s003820050009]
60. Rahimipour Anarki M. R. Mohammadi A. Rafiyan M. Arjamandi R. and Karimi S. 2019. Evaluation of virtual water and water footprint of agricultural products (Shaherstan, Qalaganj). Quarterly Journal of Geographical Studies of Arid Regions, 11(41): 52-68. [In Persian]
61. Roustaie M. Asadi A. and Kalantari Kh. 2021. Investigating the interactions of intelligent agricultural components using Dematel technique. Journal of Iranian Agricultural Economics and Development Research. 52(3): 569-589. [In Persian]
62. Salahi B, safarian zangir V. 2023. Monitoring the impact of global warming on wheat cultivation in the Mughan Plain (Germi) Using the atmospheric circulation model. Journal of Applied researches in Geographical Sciences. 23(68): 99-113. [In Persian]
63. Semenov MA. Brooks RJ. Barrow EM. and Richardson CW. 1998. Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Clim Res. 10: 95-107. [DOI:10.3354/cr010095]
64. Yang C. Fraga H. Van Ieperen W. and Santos J.A. 2017. Assessment of irrigated maize yield response to climate change scenarios in Potugal. Agricultural Water Management. 184: 178-190. [DOI:10.1016/j.agwat.2017.02.004]
65. Yu D. and Ding T. 2021. Assessment on the flow and vulnerability of water footprint network of Beijing city, China. Journal of Cleaner Production, 293:126126. [DOI:10.1016/j.jclepro.2021.126126]
66. Zareian J. 2021. Identify the priorities of the water sector to adapt to climate change in the Zayandehrood Basin with passive defense approach. Journal of Water and Irrigation Management, 11 (2): 291-300. [In Persian]
67. Zhang F. Jin G. and Liu G. 2021. Evaluation of virtual water trade in the Yellow River Delta, China. Science of the Total Environment, 784:147285. [DOI:10.1016/j.scitotenv.2021.147285] [PMID]
68. Zhao Q. Junguo L. Nikolay Kh. Obersteiner M. and Westphal M. 2014. Impacts of climate change on virtual water content of crops in China. Ecological Informatics, 19, 26-34. [DOI:10.1016/j.ecoinf.2013.12.005]
69. Zhao H. Qu S. Guo S. Zhao H. Liang S. and Xu, M. 2019. Virtual water scarcity risk to global trade under climate change. Journal of cleaner production, 230: 1013-1026. [DOI:10.1016/j.jclepro.2019.05.114]
70. Zhi Y. Hamilton P.B. Wu G. Hong N. Liang L. Xiong D. and Sun Y. 2022. Virtual water indicator for comprehensive water pressures: Model and case studies. Journal of Hydrology, 608: 127664. [DOI:10.1016/j.jhydrol.2022.127664]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.