Search published articles


Showing 2 results for Khorramabad

M. H. Ghobadi, A Ghorbani, H Mohseni, Ali Uromeiea,
Volume 8, Issue 4 (3-2015)
Abstract

 Knowing the engineering geological characteristics of carbonate formations is necessary for database. In this research, using petrological study and mechanical tests on 5 types of Ilam-Sarvak formations limestones in Khorramabad city, their engineering geological characteristics were determined and the relationship between physical and mechanical properties have been analyzed. IBM SPSS Statistics (version 19.0) software was used to determine the required relations. The relations have high correlations. Based on the studies on this of thin sections, rocks are characterszed as biomicrite. Limestones of Ilam-Sarvak formations have high hardening and low porosity. These rocks are in medium to high density, very resistant durability index, medium to high UCS and high point load strength category. The rocks are also impermeable. Based on the UCS, modulus ratio of the intact rock, the limestones are CM and CL. According to solubility test, the solution velocity constant was 1.39×10-6 m/s.
Seyed Hamed Moosavi, M Sharifzadeh ,
Volume 10, Issue 4 (5-2017)
Abstract

Combination of Adoptive Network based Fuzzy Inference System (ANFIS) and subtractive clustering (SC) has been used for estimation of deformation modulus (Em) and rock mass strength (UCSm) considering depth of measurement. To do this, learning of the ANFIS based subtractive clustering (ANFISBSC) was performed firstly on 125 measurements of 9 variables such as rock mass strength (UCSm), deformation modulus (Em), depth, spacing, persistence, aperture, intact rock strength (UCSi), geomechanical rating (RMR) and elastic modulus (Ei). Then, at second phase, testing the trained ANFISBSC structure has been perfomed on 40 data measurements. Therefore, predictive rock mass models have been developed for 2-6 variables where model complexity influences the estimation accuracy. Results of multivariate simulation of rock mass for estimating UCSm and Em have shown that accuracy of the ANFISBSC method increases coincident with development of model from 2 variables to 6 variables. According to the results, 3-variable model of ANFISBSC method has general estimation of both UCSm and Em corresponding with 20% to 30% error while the results of multivariate analysis are successfully improved by 6-variable model with error of less than 3%. Also, dip of the fitted line on data point of measured and estimated UCSm and Em for 6-variable model approaches about 1 respect to 0.94 for 3- variable model. Therefore, it can be concluded that 6-variable model of ANFISBSC gives reasonable prediction of UCSm and Em.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb